Portfolio - One or more investments held by an individual investor or by a financial organization

Example 1: Phyllis started to build an investment portfolio for her retirement.

- She purchased a $\$ 500$ Canada Savings Bond (CSB) at the end of each year for 10 years. The first five CBs earned a fixed rate of 4.2%, compounded annually. The next five CBs earned a fixed rate of 4.6% compounded annually.
- Three years ago, she also purchased a $\$ 4000$ GIC that earned 6%, compounded monthly.
a) What was the value of Phyllis's portfolio 10 years after she started to invest?

b) Phyllis found a savings account that earned 4.9%, compounded semi-annually. She redeemed her portfolio and invested all the money in the savings account. About how long will it take her to double her money?

$$
\begin{aligned}
& \text { Rule of } 72 \text { ! } \\
& 72 \div 4.9=14.69
\end{aligned}
$$

The rule of 72 is most accurate for annual compounding. This investments doubling time will most likely be closer
to 14.5 years 14.5 years.

Example 2: Jason and Malique are each hoping to buy a house in 10 years. They want their money to grow so they can make a substantial down payment.

Jason's Portfolio:

- A 10 year $\$ 2000$ GIC that earns 4.2%, compounded semi-annually
- A savings account that earns 1.8%, compounded weekly, where he saves $\$ 55$ every week
- A 5 year $\$ 4000$ bond that earns 3.9%, compounded quarterly, which he will reinvest in another bond at an interest rate of 4.1\%

Malique's Portfolio:

- A tax-free savings account (TFSA) that earns 2.2%, compounded monthly, and has a current balance of $\$ 5600$
- The purchase, at the end of each year, of a 10 year $\$ 500$ CSB that earns 3.6% compounded annually
- A savings account that earns 1.6%, compounded monthly, where she saves $\$ 200$ every month

In 10 years, whose portfolio will have the greater rate of return on investment?

GIG: $\frac{\text { Jason: }}{F V=2000\left(1+\frac{0.042}{2}\right)^{(10 \times 2)}}$ $=\$ 3030.71$

Savings:

$$
\begin{aligned}
& N=52 \times 10=520 \\
& I=1.8 \\
& P V=0
\end{aligned}
$$

MT $=-S S$
$\mathrm{FV}=$?
$P / Y=S 2$
$C / Y=52$
Bond: First Syears:

$$
F V=4000\left(1+\frac{0.039}{4}\right)^{(5 \times 4)}
$$

$$
F V=\$ 4856.65
$$

Next 5 Years:

$$
\begin{aligned}
& \text { Next s Years: } \\
& F V=4856.65\left(1+\frac{0.041}{}\right)^{(5 \times 4)} \\
& =\$<9 \ll \pi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Malique }}{\text { TFSA: }} \\
& \begin{array}{l}
\text { FY }
\end{array}=5600\left(1+\frac{0.022}{12}\right)^{(10 \times 12)} \\
& =\$ 6976.62
\end{aligned}
$$

SB: $N=10$

$$
\begin{aligned}
& I=3.6 \\
& P V=0 \\
& P M T=-500 \\
& F V=? \\
& P / Y=1 \\
& C / Y=1
\end{aligned}
$$

Savings:
$N=10 \times 12=120$
$I=1.6$
$\mathrm{PV}=0$
PM MT $=-200$

$$
\begin{aligned}
& F V=? \quad \$ 26007.87 \\
& P / y=12 \\
& c / y=12
\end{aligned}
$$

of Returns

Jason Invested:

$$
2000+(520 \times 55)+4000=\$ 34600
$$

FV of all Investments:

$$
\begin{aligned}
3031.71+31329.72+ & 5955.45 \\
& =\$ 40315.88
\end{aligned}
$$

Interest Earned:

$$
40315.88-34600=\$ 5715.88
$$

Rate of Return $=\frac{\text { Interest }}{\text { Investment }}$

$$
=\frac{5715.88}{34600}=16.5 \%
$$

Malique Invested:

$$
\begin{aligned}
5600+(10 \times 500) & +(120 \times 200) \\
& =\$ 34600
\end{aligned}
$$

FV of Malique's Investments:

$$
\begin{array}{r}
6976.62+5892.88+26007.87 \\
=\$ 38877.37
\end{array}
$$

Interest Earned:

$$
\begin{array}{r}
38877.37-34600=\$ 427.37 \\
R_{0} R=\frac{\text { Interest }}{\text { Invested }}=\frac{4277.37}{34600}=12.4 \%
\end{array}
$$

Jason has the better rate of return.

