7.1 – Exponential Functions

Exponential Functions are based on the concept of repeated multiplication.

For example folding a sheet of paper:

l = 20°	- Variable is in the Expon
Multip	lier
"Ba	== "

Number of Folds	Number of Layers
(n)	(1)
0	1 7 × 5
1	2 5,2
2	4 4 3
3	8
4	16
5	32

How many layers would there be with 10 folds?

How many layers would there be with 12 folds?

$$1 = 2^{12} = 4096$$

(exponential functions increase (= 2" = 4096 quickly -> Only & more folds; talready 4 times greater)

Exponential Function: A function of the form $y = a(b)^x$

where $a \neq 0, b > 0$, and $b \neq 1$.

(variable is in the exponent)

+ base (b) cannot be negotive:

Graphs of Exponential Functions:

Example 1:
$$y = 2^x$$

Observations:

- → Exponential growth starts slow but eventually increases very quickly
- → Exponential functions have a horizontal asymptote (a line for which the graph will get closer and closer to but never actually touch)
- \rightarrow No x-intercepts
- → Only one y-intercept
- → End Behaviour: QII to QI
- ightarrow Domain: $x \in \mathbb{R}$
- \rightarrow Range: y > 0

Example 2: $y = 3(2)^x$

** The number in front of the base is the y-intercept **

Example 3: $y = \left(\frac{1}{2}\right)^x$

** When the base is 0 < b < 1 we get Exponential Decay and b > 1 is Exponential Growth **

Assignment: Pg. 439 #1 - 3