Math 9
Name: \qquad KEY \qquad

Chapter 2 - Exponents

Test Date: \qquad
To do:
2.1 - Exponents

- Complete Notes
2.2 - BEDMAS
- Complete Notes
2.3 - Square Roots of Perfect Squares
- Complete Notes
- Quiz 1
2.4 - Square Roots of Whole Numbers
- Complete Notes
2.5 - Pythagorean Theorem
- Complete Notes
2.6 - Cubes and Cube Roots
- Complete Notes
2.7/2.8 - Exponent Laws
- Complete Notes
- Quiz 2

Assignments

- Chapter Assignment

Write Unit Test

An exponent is a quantity representing the power to which a given number or expression is to be raised. Expressed as:

$$
\begin{aligned}
& 3^{2}=3 \cdot 3 \\
& 3^{3}=3 \cdot 3 \cdot 3 \\
& 3^{4}=3 \cdot 3 \cdot 3 \cdot 3
\end{aligned}
$$

Examples:

1. Expand and evaluate:
a. $6^{3}=6 \times 6 \times 6=216$
b. $9^{7}=9 \times 9 \times 9 \times 9 \times 9 \times 9 \times 9=4,782,969$

A square number/perfect square is the result of when a number is multiplied by itself. For example:

$$
8^{2}=8 \times 8=64
$$

Any whole number multiplied by itself will result in a square number/perfect square.
Perfect Squares:

Number	Number Squared	Perfect Square
1	1^{2}	1
2	2^{2}	4
3	3^{2}	9
4	4^{2}	16
5	5^{2}	25
6	6^{2}	36
7	7^{2}	49
8	8^{2}	64
9	9^{2}	81
10	10^{2}	100
11	11^{2}	121
12	12^{2}	144
13	13^{2}	169
14	14^{2}	196
15	15^{2}	225

A special order of operations is to be done when there are several operations needed to simplify an expression.

B-brackets

E-exponents

D-division

M—multiplication

A-addition

S—subtraction

Examples:

1. $(5-3)^{2}+18 \div 2$
2. $\frac{4^{3}+6}{5 \times 2}$
$=(2)^{2}+18 \div 2$
$=4+18 \div 2$
$=\frac{64+6}{5 \times 2}$
$=\frac{70}{10}$
$=4+9$
$=7$

Finding the square root of a number is the opposite of a number squared. For example:

$$
\begin{aligned}
& 5^{2}=25 \\
& \sqrt{ } 25=5
\end{aligned}
$$

You can use prime factorization to find the square root of a perfect square. For example:

$$
\begin{aligned}
\sqrt{225} & =\sqrt{3 \times 3 \times 5 \times 5} \\
& =\sqrt{3^{2} \times 5^{2}} \\
& =3 \times 5 \\
& =15
\end{aligned}
$$

Another way to find the square root of a number is to find all the factors of the number. Factors are all the numbers that divide into it. For example:

Factors of 64: 1, 2, 4, 8, 16, 32, 64

$$
1 \times 64, \quad 2 \times 32, \quad 4 \times 16, \quad 8 \times 8
$$

Whenever a number has two "copies" of a factor, that factor is the square root of the number.

So, a perfect square will have an odd number of factors. For example:
Factors of 64: 1, 2, 4, 8, 16, 32, $64 \rightarrow 7$ factors

Examples:

1. $\sqrt{81}=9$
$\sqrt{49}=7$
$\sqrt{400}=20$
2. Solve for x
$x^{2}=36$
$x^{2}=25$
$x^{2}=9$
$x=6$
$x=5$
$x=3$
3. Use prime factorization and factors to evaluate.

$$
\begin{aligned}
\sqrt{324} & =\sqrt{2 \times 2 \times 3 \times 3 \times 3 \times 3} \\
& =\sqrt{2^{2} \times 3^{4}} \\
& =2 \times 3^{2} \\
& =18
\end{aligned}
$$

The square root of a number can also be determined by finding the side length of a square whose area is equal to that number. For example:

$$
\begin{aligned}
\text { Area }=49 \text { units }^{2} & =\text { side length } \times \text { side length } \\
\sqrt{49} & =\sqrt{\text { side length }} \\
7 \text { units } & =\text { side length }
\end{aligned}
$$

We can approximate the square root of a whole number that is not a perfect square by determining what two perfect squares it is between. We use the perfect squares as benchmarks. For example:

The square root of 39 must lie between the square root of 36 and the square root of 49 .

Knowing this, I know that the square root of 39 is somewhere between 6 (the square root of 36) and 7 (the square root of 49).

Once you have an approximate value you can use a number line to be more accurate. (Use a number line)

A more accurate way of finding square roots of non-perfect numbers is to use a calculator. It is important to understand how this tool works in order to correctly input the calculation to get the correct outcome! For example:
$\sqrt{13}=3.605551275463989293119221267470495946251296573845246212 \ldots$
This answer-even with all of the decimal places-is rounded!

Examples:

1. Use your calculator to evaluate. Round your answer to 2 decimal places.

$$
\sqrt{88} \approx 9.38 \quad \sqrt{32} \approx 5.66
$$

2. Approximate:
$\sqrt{41} \quad \sqrt{13}$
$\sqrt{82}$

Pythagoras, a Greek mathematician, showed that in any right triangle, there is a special relationship among the side lengths of a right triangle. A right triangle is one that has two sides that form a right angle $\left(90^{\circ}\right)$. The side opposite the right angle is called the hypotenuse and the two shorter sides are called legs.

He found that: The area defined by the square of the hypotenuse equals the sum of the areas defined by the squares of the other two sides.

Hence,

$$
\begin{aligned}
& 5^{2}=3^{2}+4^{2} \\
& 25=9+16
\end{aligned}
$$

Examples:

1. Solve for the unknown in each of these right triangles:

$$
\begin{aligned}
x^{2} & =8^{2}+4^{2} \\
x & =\sqrt{64+16} \\
x & =\sqrt{80}
\end{aligned}
$$

$$
\begin{aligned}
7.4^{2} & =x^{2}+3.6^{2} \\
54.76 & =x^{2}+12.96 \\
x^{2} & =54.76-12.96 \\
x & =\sqrt{41.8}
\end{aligned}
$$

2. Determine whether or not the following triangle has a right angle (Is it a Pythagorean triplet?):

$$
\begin{aligned}
& 26^{2}=10^{2}+24^{2} \\
& 676=100+576 \rightarrow T R U E
\end{aligned}
$$

Any whole number multiplied by itself "twice" (three copies in total) will result in a cube number.

Perfect Cubes:

Number	Number Cubed	Perfect Cube
1	1^{3}	1
2	2^{3}	8
3	3^{3}	27
4	4^{3}	64
5	5^{3}	125
6	6^{3}	216
7	7^{3}	343
9	8^{3}	512
10	9^{3}	729
	10^{3}	1000

** You can use similar techniques for evaluating and estimating as you did with perfect squares and square roots **

Examples:

1. Estimate:
$\sqrt[3]{46}$

Between 3 and 4
Between 2 and 3
2. Evaluate using calculator. Round answer to the nearest hundredth.
$\sqrt[3]{50}$
≈ 3.68
≈ 4.20

You can use the exponent laws to simplify an expression involving powers:

- To multiply powers with the same base, add the exponents
- To divide powers with the same base, subtract the exponents
- To raise a power to an exponent, multiply the exponents

Hence,

Product of Powers

Quotient of Powers

Power of a Power

Raising a power to a Product

Raising a power to a Quotient

Zero Power

Negative Power

$$
\begin{aligned}
& \left(\boldsymbol{a}^{m}\right)\left(a^{n)}=a^{m+n}\right. \\
& \frac{a^{m}}{a^{n}}=a^{m-n}, a \neq \mathbf{0}
\end{aligned}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
(a \times b)^{n}=a^{n} \times b^{n}
$$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

$$
a^{0}=1
$$

$$
a^{-1}=\frac{1}{a}
$$

Examples: Simplify
(a) $\left(3^{2}\right)\left(3^{4}\right)=3^{2+4}=3^{6}=729$
(b) $6^{5} \div 6^{3}=6^{5-3}=6^{2}=36$
(c) $\left(4^{2}\right)^{5}=4^{2 \times 5}=4^{10}=1,048,576$
(d) $\left(x^{6}\right)\left(x^{5}\right)=x^{6 \times 5}=x^{30}$
(e) $x^{7} \div x^{2}=x^{7-2}=x^{5}$
(f) $\left(x^{5}\right)^{4}=x^{5 \times 4}=x^{20}$
(g) $(-2)^{7}(-2)^{3} \div\left[(-2)^{2}\right]^{3}=(-2)^{7+3} \div(-2)^{2 \times 3}=(-2)^{10} \div(-2)^{6}=(-2)^{10-6}=(-2)^{4}$
(h) $\frac{\left(y^{3}\right)^{5}}{(y)\left(y^{4}\right)}=\frac{y^{15}}{y^{5}}=y^{15-5}=y^{10}$
(i) $-(453)^{0}=-(1)=-1$
(j) $\left(2^{3} \times 3^{2}\right)^{2}=2^{3 \times 2} \times 3^{2 \times 2}=2^{6} \times 3^{4}$

