Math 9 Name:KEY	Tripp
<u>Chapter 2 – Exponents</u>	
Test Date:	
<u>To do:</u>	
2.1 – ExponentsComplete Notes	0
2.2 – BEDMASComplete Notes	0
 2.3 – Square Roots of Perfect Squares Complete Notes Quiz 1 	0 0
2.4 – Square Roots of Whole NumbersComplete Notes	0
 2.5 – Pythagorean Theorem Complete Notes 	0
2.6 – Cubes and Cube RootsComplete Notes	0
 2.7/2.8 – Exponent Laws Complete Notes Quiz 2 	0 0
Assignments Chapter Assignment 	0
Write Unit Test	0

Math 9

An exponent is a quantity representing the **power** to which a given number or expression is to

be raised. Expressed as:

Examples:

- 1. Expand and evaluate:
 - a. $6^3 = 6 \times 6 \times 6 = 216$

b. $9^7 = 9 \times 9 = 4,782,969$

A square number/perfect square is the result of when a number is multiplied by itself. For

example:

 $8^2 = 8 \times 8 = 64$

Any **whole** number multiplied by itself will result in a **square number/perfect square**.

Perfect Squares:

Number	Number Squared	Perfect Square
1	1 ²	1
2	2 ²	4
3	3 ²	9
4	4 ²	16
5	5 ²	25
6	6 ²	36
7	7 ²	49
8	8 ²	64
9	9 ²	81
10	10 ²	100
11	112	121
12	12 ²	144
13	13 ²	169
14	14 ²	196
15	15 ²	225

Lesson 2.2 - BEDMAS

A special order of operations is to be done when there are several operations needed to simplify an expression.

B-brackets

E—exponents

D—division

M—multiplication

A—addition

S—subtraction

Examples:

1. $(5-3)^2 + 18 \div 2$	2. $\frac{4^3+6}{5\times 2}$
$= (2)^2 + 18 \div 2$	$=\frac{64+6}{5\times 2}$
$= 4 + 18 \div 2$	$=\frac{70}{10}$
= 4 + 9	= 7
= 13	

Finding the square root of a number is the **opposite** of a number squared. For example:

 $5^2 = 25$ $\sqrt{25} = 5$

You can use prime factorization to find the square root of a perfect square. For example:

$\sqrt{225} = v$	3 ×	3	×	5	×	5
= v	32 >	< 5 [:]	2			
= 3	3×5					
= 1	5					

Another way to find the square root of a number is to find all the **factors** of the number. Factors

are all the numbers that **divide** into it. For example:

Factors of 64: 1, 2, 4, 8, 16, 32, 64

 1×64 , 2×32 , 4×16 , 8×8

Whenever a number has two "copies" of a factor, that factor is the square root of the number.

So, a perfect square will have an **odd** number of factors. For example:

Factors of 64: 1, 2, 4, 8, 16, 32, 64 → 7 factors

Tripp

Examples:

1.
$$\sqrt{81} = 9$$
 $\sqrt{49} = 7$ $\sqrt{400} = 20$

2. Solve for *x*

$$x^2 = 36$$
 $x^2 = 25$ $x^2 = 9$
 $x = 6$ $x = 5$ $x = 3$

3. Use prime factorization and factors to evaluate.

$$\sqrt{324} = \sqrt{2 \times 2 \times 3 \times 3 \times 3 \times 3}$$
$$= \sqrt{2^2 \times 3^4}$$
$$= 2 \times 3^2$$
$$= 18$$

The square root of a number can also be determined by **finding the side length of a square** whose area is equal to that number. For example:

Area = 49 units² = side length × side length $\sqrt{49} = \sqrt{side \ length}$

7 units = side length

We can approximate the square root of a whole number that is not a perfect square by

determining what two perfect squares it is between. We use the perfect squares as

benchmarks. For example:

The square root of 39 must lie between the square root of 36 and the square root of 49.

Knowing this, I know that the square root of 39 is somewhere between 6 (the square root of 36)

and 7 (the square root of 49).

Once you have an approximate value you can use a number line to be more accurate. (Use a

Tripp

A more accurate way of finding square roots of non-perfect numbers is to use a **calculator**. It is important to understand how this tool works in order to correctly input the calculation to get the correct outcome! For example:

 $\sqrt{13} = 3.605551275463989293119221267470495946251296573845246212...}$

This answer—even with all of the decimal places—is rounded!

Examples:

1. Use your calculator to evaluate. Round your answer to 2 decimal places.

 $\sqrt{88} \approx 9.38$ $\sqrt{32} \approx 5.66$

2. Approximate:

 $\sqrt{41}$

 $\sqrt{13}$

 $\sqrt{82}$

Between 6 and 7

Between 3 and 4

Between 9 and 10

Pythagoras, a Greek mathematician, showed that in any right triangle, there is a special relationship among the **side lengths of a right triangle**. A right triangle is one that has two sides that form a **right angle (90°)**. The side opposite the right angle is called the **hypotenuse** and the two shorter sides are called **legs**.

He found that: The area defined by the square of the hypotenuse equals the sum of the areas defined by the squares of the other two sides.

Hence,

$$5^2 = 3^2 + 4^2$$

 $25 = 9 + 16$

Examples:

1. Solve for the unknown in each of these right triangles:

2. Determine whether or not the following triangle has a right angle (Is it a Pythagorean

Any **whole** number multiplied by itself "twice" (three copies in total) will result in a **cube number**.

Perfect Cubes:

Number	Number Cubed	Perfect Cube
1	1 ³	1
2	2 ³	8
3	3 ³	27
4	4 ³	64
5	5 ³	125
6	6 ³	216
7	7 ³	343
8	8 ³	512
9	9 ³	729
10	10 ³	1000

** You can use similar techniques for evaluating and estimating as you did with

perfect squares and square roots **

Examples:

1. Estimate:

 $\sqrt[3]{46}$

 $\sqrt[3]{24}$

Between 3 and 4

Between 2 and 3

2. Evaluate using calculator. Round answer to the nearest hundredth.

³ √50	³ √74
≈ 3.68	≈ 4.20

Lesson 2.7/2.8 – Exponent Laws

You can use the exponent laws to simplify an expression involving powers:

- To multiply powers with the same base, add the exponents
- To divide powers with the same base, **subtract** the exponents
- To raise a power to an exponent, multiply the exponents

Hence,

Product of Powers	$(a^m)(a^{n)}=a^{m+n}$
Quotient of Powers	$rac{a^m}{a^n}=a^{m-n}$, $a eq 0$
Power of a Power	$(a^m)^n = a^{mn}$
Raising a power to a Product	$(a \times b)^n = a^n \times b^n$
Raising a power to a Quotient	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
Zero Power	$a^{0} = 1$
Negative Power	$a^{-1}=\frac{1}{a}$

Examples: Simplify

- (a) $(3^2)(3^4) = 3^{2+4} = 3^6 = 729$
- (b) $6^5 \div 6^3 = 6^{5-3} = 6^2 = 36$
- (c) $(4^2)^5 = 4^{2 \times 5} = 4^{10} = 1,048,576$

(j)
$$(2^3 \times 3^2)^2 = 2^{3 \times 2} \times 3^{2 \times 2} = 2^6 \times 3^4$$

(i)
$$-(453)^0 = -(1) = -1$$

(h)
$$\frac{(y^3)^5}{(y)(y^4)} = \frac{y^{15}}{y^5} = y^{15-5} = y^{10}$$

(g)
$$(-2)^7(-2)^3 \div [(-2)^2]^3 = (-2)^{7+3} \div (-2)^{2\times 3} = (-2)^{10} \div (-2)^6 = (-2)^{10-6} = (-2)^4$$

(f)
$$(x^5)^4 = x^{5 \times 4} = x^{20}$$

(e)
$$x^7 \div x^2 = x^{7-2} = x^5$$

(d)
$$(x^6)(x^5) = x^{6 \times 5} = x^{30}$$