Math 9
Name: \qquad KEY

Chapter 4 - Polynomials

Test Date: \qquad

To do:
4.1 - Polynomials

- Complete Notes
- Quiz 1
4.2 - Simplify Polynomials
- Complete Notes
4.3 - Adding and Subtracting Polynomials
- Complete Notes
- Quiz 2

Assignment \# 2 (Units 3 \& 4)

Write Unit Test

An expression is the result of applying arithmetic operations to numbers and variables. For example:

$$
3 x^{2}-7
$$

The variable x has a degree of 2 . The 3 (in front of the x^{2}) is a coefficient.

A polynomial is an algebraic expression that is the sum of numbers and terms involving variables with exponents that are whole numbers; the variables can be multiplied by or divided by any numbers. For example:

In the above example, $3 x^{2}-7$ is a polynomial.

A term is a part of a polynomial, separated from the other terms by addition signs. For example:

In the above example, $3 x^{2}$ is a single term and - 7 is a second term, both within the same polynomial.

A degree is the power to which the variable in a term is raised; if a term contains two variables, its degree is the sum of the exponents of those variables. For example:

Degrees of each term in $5 a^{4} b^{2}-3 b+4:(4+2=6), 1$, and 0 , respectively.

The degree of the polynomial is the greatest of the degrees of the polynomial's terms. For example:

$$
\begin{gathered}
7 x^{2}-3 x+5 \\
\text { Degree of } 7 x^{2}: 2, \text { degree of } 3 x: 1, \text { degree of } 5: 0
\end{gathered}
$$

Example 1: Identify each expression as a monomial, binomial, or trinomial. Identify the degree of each polynomial, all coefficients, variables, and constants.
$-6 a^{3} b^{2}$
$2 x+7$
$x^{2}-6 x+9$

Monomial

Degree: $3+2=5$
Coeff.: -6
$\operatorname{Var}(\mathrm{s}) .: a$ and b

Constant(s): none

Binomial

Degree: 1

Coeff.: 2
$\operatorname{Var}(\mathrm{s}) .: x$

Constant(s): + 7

Trinomial

Degree: 2
Coeff.: 1, -6
$\operatorname{Var}(\mathrm{s}) .: x$

Constant(s): + 9

Example 2: Write the following polynomial in descending order.

$$
\begin{aligned}
& 7 x^{3} y-5 x^{4}+9 x^{2} y^{4}+8 x^{5}-2 x-13 \\
& 9 x^{2} y^{4}+8 x^{5}-5 x^{4}+7 x^{3} y-2 x-13
\end{aligned}
$$

Example 3: Evaluate the following polynomial for $x=2$

$$
\begin{aligned}
& 7 x^{2}-3 x+5 \\
& =7(2)^{2}-3(2)+5 \\
& =7(4)-6+5 \\
& =28-6+5 \\
& =27
\end{aligned}
$$

In order to model polynomials, you may need to group like terms/simplify, which is the act of combining or gathering "like terms" creating an equivalent polynomial with fewer terms. Like terms are terms of a polynomial that are identical (same variable and same exponent) except for their coefficients. For examples:

Like terms: $3 x^{2},-x^{2}, \frac{x^{2}}{2}$

Example 1: Simplify $2 x-3 x^{2}+5-4 x+6 x^{2}$:

$$
3 x^{2}-2 x+5
$$

Example 2: Which two of the following polynomials below are equivalent? Explain:
a) $2 x^{2}+x y-y^{2}-2 y+1$
b) $2 x^{2}-x y-y^{2}-2 y+1+x^{2}-2 x^{2}+x y$
c) $x y+2 x^{2}+x y-y^{2}-2 y+1+x^{2}-x^{2}+x y-2 x y$
a) $2 x^{2}+x y-y^{2}-2 y+1$
b) $-x^{2}-y^{2}-2 y+1$
c) $2 x^{2}+x y-y^{2}-2 y+1$

Therefore, a) and c) are equivalent.

To add polynomials, we group like terms and simplify.

To subtract a polynomial, we add its opposite (negative).

Example 1: Add $\left(4 x^{2}+2 x y-8\right)$ to $\left(-6 x^{2}-4 x y\right)$:
$\left(4 x^{2}-6 x^{2}\right)+(2 x y-4 x y)+(-8)=-2 x^{2}-2 x y-8$

Example 2: Joan and Chris both have jobs. They work the same number of hours per week.
Their pay rates and expenses are shown:

	Pay per Hour	Weekly Expenses
Joan	$\$ 15$	\$40 Transportation
Chris	$\$ 14$	\$35 Cafeteria Charge

a) Use a polynomial to describe their combined income:
$\operatorname{total}(h)=(15 h-40)+(14 h-35)=29 h-75$
b) Determine their combined weekly income if they both work 40 h in a week:
$\operatorname{total}(40)=29(40)-75=1160-75=1085$

Example 3: Determine the difference of $3 x^{2}-2 x+2$ by $2 x^{2}-2 x+1$:
$\left(3 x^{2}-2 x+2\right)-\left(2 x^{2}-2 x+1\right)$
$=\left(3 x^{2}-2 x^{2}\right)+(-2 x+2 x)+(2-1)$
$=x^{2}+1$

Example 4: Determine the difference of the following polynomials:
a) $3 x^{2}-2 x+1$ and $2 x^{2}-2 x-2$
$\left(3 x^{2}-2 x+1\right)-\left(2 x^{2}-2 x-2\right)$
$=\left(3 x^{2}-2 x^{2}\right)+(-2 x+2 x)+(1+2)$
$=x^{2}+3$
b) $-4 x^{2}+x y+1$ and $-2 x^{2}+3 x y+1$
$\left(-4 x^{2}+x y+1\right)-\left(-2 x^{2}+3 x y+1\right)$
$=\left(-4 x^{2}+2 x^{2}\right)+(x y-3 x y)+(1-1)$
$=-2 x^{2}-2 x y$

