Math 9 Name:KEY	Tripp			
Chapter 4 – Polynomials				
Test Date:				
<u>To do:</u>				
 4.1 – Polynomials Complete Notes Quiz 1 	0 0			
4.2 – Simplify PolynomialsComplete Notes	0			
 4.3 – Adding and Subtracting Polynomials Complete Notes Quiz 2 	00			
Assignment # 2 (Units 3 & 4)	0			

 \bigcirc

Write Unit Test

Lesson 4.1 – Polynomials

An **expression** is the result of applying arithmetic operations to numbers and variables. For example:

*3x*² – 7

The variable x has a degree of 2. The 3 (in front of the x^2) is a coefficient.

A **polynomial** is an algebraic expression that is the sum of numbers and terms involving variables with exponents that are whole numbers; the variables can be multiplied by or divided by any numbers. For example:

In the above example, $3x^2 - 7$ is a polynomial.

A term is a part of a polynomial, separated from the other terms by addition signs. For

example:

In the above example, $3x^2$ is a single term and -7 is a second term, both within the same

polynomial.

A **degree** is the power to which the variable in a term is raised; if a term contains two variables, its degree is the **sum** of the exponents of those variables. For example:

Degrees of each term in $5a^4b^2 - 3b + 4$: (4 + 2 = 6), 1, and 0, respectively.

The **degree of the polynomial** is the greatest of the degrees of the polynomial's terms. For example:

$$7x^2 - 3x + 5$$

Degree of $7x^2$: 2 , degree of 3x: 1 , degree of 5: 0

Example 1: Identify each expression as a monomial, binomial, or trinomial. Identify the degree of each polynomial, all coefficients, variables, and constants.

$-6a^3b^2$	2x + 7	$x^2 - 6x + 9$
Monomial	Binomial	Trinomial
Degree: 3 + 2 = 5	Degree: 1	Degree: 2
Coeff.: –6	Coeff.: 2	Coeff.: 1, -6
Var(s).: <i>a</i> and <i>b</i>	Var(s).: <i>x</i>	Var(s).: <i>x</i>
Constant(s): none	Constant(s): + 7	Constant(s): + 9

Example 2: Write the following polynomial in descending order.

$$7x^3y - 5x^4 + 9x^2y^4 + 8x^5 - 2x - 13$$

$$9x^2y^4 + 8x^5 - 5x^4 + 7x^3y - 2x - 13$$

Example 3: Evaluate the following polynomial for x = 2

$$7x^{2} - 3x + 5$$

= 7(2)² - 3(2) + 5
= 7(4) - 6 + 5
= 28 - 6 + 5
= 27

In order to model polynomials, you may need to group like terms/simplify, which is the act of combining or gathering "like terms" creating an equivalent polynomial with fewer terms. Like terms are terms of a polynomial that are identical (same variable and same exponent) except for their coefficients. For examples:

Like terms: $3x^2$, $-x^2$, $\frac{x^2}{2}$

Example 1: Simplify $2x - 3x^2 + 5 - 4x + 6x^2$:

 $3x^2 - 2x + 5$

Example 2: Which two of the following polynomials below are equivalent? Explain:

- a) $2x^2 + xy y^2 2y + 1$
- b) $2x^2 xy y^2 2y + 1 + x^2 2x^2 + xy$
- c) $xy + 2x^2 + xy y^2 2y + 1 + x^2 x^2 + xy 2xy$

a)
$$2x^2 + xy - y^2 - 2y + 1$$

- b) $-x^2 y^2 2y + 1$
- c) $2x^2 + xy y^2 2y + 1$

Therefore, a) and c) are equivalent.

Tripp

To add polynomials, we group like terms and simplify.

To subtract a polynomial, we add its opposite (negative).

Example 1: Add $(4x^2 + 2xy - 8)$ to $(-6x^2 - 4xy)$:

 $(4x^{2} - 6x^{2}) + (2xy - 4xy) + (-8) = -2x^{2} - 2xy - 8$

Example 2: Joan and Chris both have jobs. They work the same number of hours per week.

Their pay rates and expenses are shown:

	Pay per Hour	Weekly Expenses
Joan	\$15	\$40 Transportation
Chris	\$14	\$35 Cafeteria Charge

a) Use a polynomial to describe their combined income:

total(h) = (15h - 40) + (14h - 35) = 29h - 75

b) Determine their combined weekly income if they both work 40 h in a week:

total(40) = 29(40) - 75 = 1160 - 75 = 1085

Example 3: Determine the difference of $3x^2 - 2x + 2$ by $2x^2 - 2x + 1$:

$$(3x^{2} - 2x + 2) - (2x^{2} - 2x + 1)$$

= $(3x^{2} - 2x^{2}) + (-2x + 2x) + (2 - 1)$
= $x^{2} + 1$

Example 4: Determine the difference of the following polynomials:

a)
$$3x^2 - 2x + 1$$
 and $2x^2 - 2x - 2$
 $(3x^2 - 2x + 1) - (2x^2 - 2x - 2)$
 $= (3x^2 - 2x^2) + (-2x + 2x) + (1 + 2)$
 $= x^2 + 3$

b)
$$-4x^{2} + xy + 1$$
 and $-2x^{2} + 3xy + 1$
 $(-4x^{2} + xy + 1) - (-2x^{2} + 3xy + 1)$
 $= (-4x^{2} + 2x^{2}) + (xy - 3xy) + (1 - 1)$
 $= -2x^{2} - 2xy$