Math 9
Name: \qquad KEY \qquad

Chapter 5-Graphing and Tables

Test Date: \qquad
To do:
5.1/5.2 - Graph Types/Graphs and Spreadsheets

- Complete Notes
5.3 - Cartesian Coordinates
- Complete Notes
5.4 - Data Trends
- Complete Notes
- Quiz 1
5.5 - Equations, Tables and Graphs
- Complete Notes
5.6 - Best Form
$5.7-y=m x+b$
- Complete Notes
- Quiz 2

Assignment \# 3 (Units 5 \& 6)

Write Unit Test

Line Graphs

Scatterplots

Pie Graphs

Bar Graphs

Pictographs

NUMBER OF APPLES SOLD	
Monday	
Tuesday	Wednesday
Thursday	Friday
LEGEND:	
2 apples sold	

Misleading Graphs

Unemployment Rate

Steps for building a Coordinate Plane:

1. Start by thinking about the horizon, then draw our horizontal axis.
2. Mark an X on our horizontal axis so we know that it's our X-axis.
3. Draw our vertical axis, perpendicular to the X-axis.
4. Mark a Y on the vertical axis so we know that it's our Y -axis.
5. Confirm Y has a little V in it. Use this to ensure you have the X and Y correct.
6. The origin is the intersection point in the middle (where both axes are at zero).
7. Add a scale to the X-axis. Positive to the right, Negative to the left.
8. Add a scale to the Y-axis. Positive going up, Negative going down.
9. You're ready to graph!

Plotting points:

- The location of a point is determined by its coordinates.
- We need an x-coordinate and a y-coordinate.
- The coordinates are often presented like this (1, -2).
- The set of coordinates can also be called an ordered pair.
- The first number is the X-value (left or right).
- The second number is the Y-value (up or down).

Types of trends:

- Linear = best represented by a straight line.
- Nonlinear = best represented by some nonlinear curve.

How good is a trend line? Some data follows a trend closely, while other data is not that close. How do we describe the difference?

Correlation Coefficient:

- $r=$ correlation coefficient $=$ how well the curve fits the data
- $r=1$: perfect positive correlation
- $r=0$: no correlation
- $r=-1$: perfect negative correlation

Sometimes we want to estimate a value that goes beyond the values that we already know from the pattern. This process of going beyond is called extrapolation.

What is the approximate value of the C-coordinate when $t=55$?

Approx. \$60

Sometimes we want to find a value by calculating or estimating between two already known values; this process is called interpolation.

What is the approximate value of the t-coordinate when $A=3$?

Approx. 10 km

When data from two variables are collected it is usually put into a table of values and/or a graph, so a relationship between the variables can be more easily recognized.

We will be looking at linear relationships, which means the relationship between the two variables will be one-to-one/linear.

Equations to tables:

1. make table
2. sample set of data for independent variable in left column
3. evaluate for each set of data in right column
4. done!

Tables to graphs:

1. make grid
2. independent variable on horizontal axis
3. dependent variable on vertical axis
4. plot each "data set" or "ordered pair"
5. done!

To create an equation from a table of values, you need to determine:

- the pattern (When x increases by $1, y$ increases/decreases by \qquad)
- the value of y when $x=0$.

Next, input this information into your linear equation as follows:

- the pattern becomes the coefficient for x (the number by which x will be multiplied) $E x$.

$$
y=3 x+2
$$

- the value of y when $x=0$ becomes the constant (the number added at the end) Ex. y $=3 x+2$

Examples:

1. Write a linear equation that represents the pattern found in the given table of values and then verify the equation:

x	y
0	9
1	13
2	17
3	21

$y=4 x+9$
2. Complete the table of values for the following graph:

Cost vs. Number of Juice Cartons

\boldsymbol{n}	\boldsymbol{C}
4	12

3. Graph the following linear equation: $y=2 x+1$

The slope of a line describes both the direction and steepness of the line. It is calculated by finding the ratio of the rise (difference in y-values) to the run (difference in x-values) between any two distinct points on a line.

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The slope-intercept form of an equation:

$$
y=m x+b
$$

can save us a lot of time in our graphing!

Examples:

1. Use the equation for slope to determine the slope of a line that passes through the given points:
$(-1,4)$ and $(6,2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-4}{6+1}=-\frac{2}{7}$
$y=-\frac{2}{7} x+b$
Using the second point (6, 2): $y==-\frac{2}{7} x+b \rightarrow 2=-\frac{2}{7}(6)+b \rightarrow 2+\frac{12}{7}=b \rightarrow \frac{26}{7}=b$
2. Graph the line using only the slope-intercept equation:

$$
y=-2 x+5
$$

3. Match the following equations to the appropriate graph:

$$
y=2-x, \quad y=3 x-3, \quad y=x-2
$$

