Math 9
Name: \qquad KEY

Chapter 6-Geometry

Test Date: \qquad
To do:
6.1/6.2 - Equivalent Ratios

- Complete Notes
- Quiz 1
6.3 - Scale Models
- Complete Notes
6.4 - Similar Triangles
- Complete Notes
- Quiz 2

Assignment \# 3 (Units 5 \& 6)

Write Unit Test

A ratio is a comparison of amounts.

There are many ways to compare and express ratios:

- Part-to-part
- Part-to-whole
- Multiple term ratios

Part-to-part

Ratios that compare one part to another part:

- there are 3 apples and 2 oranges - apples to oranges - 3:2
- there are 2 oranges and 3 apples - oranges to apples - 2:3

Part-to-whole

Ratios that compare one part to the whole group:

- there are 3 apples and 5 fruit - apples to fruit - 3:5
- there are 5 fruit and 2 oranges - fruit to oranges -5:2
**Part-to-whole ratios can also be expressed with fractions and percents.

Multiple term ratios

Multiple term ratios will compare more than 2 amounts:

- In a backpack, there are 3 pens, 4 marbles, 7 comics, and 1 apple.
- The ratio of marbles to comic books to pens is four to seven to three (or 4:7:3)

Practice:

1. A juice from concentrate instructs that you need to combine 3 cans of water with 1 can of frozen juice. What is the ratio of cans of juice to cans of water?
2. The ratio of cans of juice to cans of water is $1: 3$.
3. Jenna has a bag full of school supplies. She has 4 pencils, 7 pieces of paper, 1 pen, and 2 erasers.

What is the ratio of erasers to pencils?

The ratio of erasers to pencils is $2: 4 \rightarrow 1: 2$.

What is the ratio of pieces of paper to the total number of items in the bag? Express as a fraction and a percent:

The ratio of pieces of paper to the total number of items is $7: 14 \rightarrow 1: 2$ (1/2 or $50 \%)$.

Equivalent ratios are pairs of numbers, written as ratios that are equivalent to each other. Equivalent ratios can be formed by multiplying or dividing the terms by the same non-zero number.

Practice:

1. Write 3 ratios equivalent to $2: 6$

$$
4: 12,6: 18,20: 60, \ldots
$$

2. Write a ratio equivalent to $\frac{18}{12}$ in lowest terms

$$
18: 12=3: 2
$$

3. A class of 28 students had some blue-eyed students and some brown-eyed students.

The ratio of blue-eyed to brown-eyed was $4: 3$. How many blue-eyed students were in the class?
4. $4: 3 \rightarrow 7$ "parts" with 4 blue-eyed and 3 brown-eyed
5. So, there are 16 blue-eyed students and 12 brown-eyed students.

An enlargement of an image increases its size but does not change its proportions. An image expands its size by a scale factor. This can be described by the following ratio:

$$
\frac{\text { Enlargement }}{\text { Original }}=\frac{\text { Scale Factor }}{1}
$$

A reduction of an image decreases its size, or makes it smaller, but does not change its proportions. In this case, the scale factor will be a fraction less than 1. For example:

$$
\frac{\text { Reduction }}{\text { Original }}=\frac{\text { Scale Factor }}{1}
$$

To find a scale factor, given the original figure and its enlarged or reduced size, we need to measure one pair of corresponding sides of both the original and the changed figure, and compare the changed version to the original version. Hence,

$$
\text { Scale Factor }=\frac{\text { Changed Figure }}{\text { Original Figure }}
$$

Examples:

1. Enlarge the square by a scale factor of 2

2. Reduce the triangle by a scale factor of $\frac{1}{2}$

3. Identify the scale factors for each of the following:

a) From A to B
$1 / 4(A$ is 4 times larger than B)
b) From C to D
$1 / 2(C$ is 4 times larger than $D)$
c) From D to B

1 (D is the same size as B)
d) From A to C
$1 / 2(A$ is 2 times larger than C)

A scale diagram is used to draw an object when it is too large or too small to draw the object to its actual size. For example:

The scale diagram has a scale factor that is the ratio of the length of one of the dimensions in the diagram compared to the corresponding dimension of the actual object. For example:

To find the scale we must write each term of the ratio in the same base units and reduce it to lowest terms. For example:

To find the actual length of one dimension of an object, given the scale and the length of the corresponding dimension in the drawing, use a proportion to solve for the unknown. For example:

Examples:

1. Below is a scale diagram of a snowboard. The scale used is $1: 36$

What is the actual length of the snowboard?

$$
4.5 \mathrm{~cm} \times 36=162 \mathrm{~cm}
$$

2. The official NHL hockey puck has a diameter of 7.6 cm . below is an image of the hockey puck with a diameter of 16.2 mm . Calculate the scale factor used to create the drawing of the hockey puck.

$$
\text { scale }=\frac{\text { changed }}{\text { original }}=\frac{16.2 \mathrm{~mm}}{76 \mathrm{~mm}} \approx 0.21
$$

Two triangles are similar if the ratios of corresponding sides are equal.

Two triangles are also similar if the corresponding pairs of angles are equal.

Examples:

1. Write the ratios of the sides and the corresponding angles:

$$
\frac{A B}{A D}=\frac{B G}{D E}=\frac{A G}{A E}
$$

2. Find the unknown side lengths

$$
\begin{aligned}
A C & =\sqrt{A B^{2}+B C^{2}} \\
& =\sqrt{64+36} \\
& =10
\end{aligned}
$$

Therefore, triangle $D E F$ is 7 times larger than triangle $A B C$.

$$
\begin{aligned}
& D E=A B \times 7=8 \times 7=56 \\
& E F=B C \times 7=6 \times 7=42
\end{aligned}
$$

